
Noname manuscript No.
(will be inserted by the editor)

A Model-based Approach for Planning Blockchain
Service Provisioning

Carlos Melo, Jean Araujo, Jamilson
Dantas, Paulo Pereira and Paulo Maciel

Received: date / Accepted: date

Abstract Recently, the blockchain-as-a-service paradigm arose, and many
works have evaluated the performance issues related to it. However, not as
much has been done regarding Dependability attributes, which have ever
been a crucial topic on service provisioning, let it be either public or pri-
vate infrastructures. This paper presents the Blockchain Provisioning Plan-
ning Tool (BPPT), a framework to evaluate the availability, deployment, and
maintenance costs of Hyperledger Fabric-based applications over private com-
putational infrastructures. The BPPT uses Continuous Time Markov Chain
(CTMC) and Reliability Block Diagram (RBD) models as an evaluation method
of Hyperledger Fabric’s environments and determines distributed applications’
deployment feasibility and endorsement policies related to the platform. We
also present case studies that may help those interested in paradigm changes
to decide whether they should migrate from old to new technology. Some of
the obtained results pointed-out that the AND endorsement, which requires
that all nodes sign the authenticity of a transaction, has the highest deploy-
ment and maintenance costs, as well as the lowest availability values due to
operational requirements, already an OR endorsement, which needs that at
least one available node signs the transaction, provides the best relationship
between the evaluated metrics. The KooN endorsement (that requires that K
out of N nodes signs a transaction authenticity) is a more general model that
supports analyzing midterm configurations, besides the two extreme configu-
rations, that is, to AND and OR arrangements.

Keywords Framework · Availability · Costs · Blockchain · Fabric

Carlos Melo, Jamilson Dantas, Paulo Pereira, and Paulo Maciel
Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
Tel.: +55-87-999265912
E-mail: casm3,jrd,prps,prrm@cin.ufpe.br

Jean Araujo
Universidade Federal do Agreste de Pernambuco, Garanhuns, Brazil
E-mail: jean.teixeira@ufape.edu.br

2 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

1 Introduction

Blockchain is the technology behind the Bitcoin [10], which showed up at the
end of the 2000s, but is not as famous among users as cryptocurrency is. This
may have been due to the simple fact that it is easier to put a value over
an application than assigning it over an entire technology. Nevertheless, this
trending technology emerged from the distributed computing paradigm and
can be (and already is) used as a safer way to transfer, host, and share infor-
mation between users, companies, and entities. However, as we keep learning
and improving our definition of this technology, it is possible to foresight that
there are still many to be done to determine the feasibility of adopting this
paradigm to deploy and host distributed applications.

The Hyperledger consortium [7], which is managed by Linux Foundation
and hosts a set of projects to help users and companies to migrate from tradi-
tional and (too) old tools and mechanisms to this (not so) new (but emerging)
technology. One of these projects is the Hyperledger Fabric, which has become
a standard for providing blockchain-based services on major cloud computing
platforms such as Amazon, Google, IBM, and Microsoft and is a kick-off for
Blockchain-as-a-Service provisioning.

As with any cloud computing service, the users requires it and its data
to be available 24 hours a day and seven days a week, and depending on
the application hosted by the platform such as a medical history of a patient
[4] or any other critical system, a failure on service provisioning may lead
from financial losses to deaths. From the cloud service provider perspective,
a Service Level Agreements (SLA) must be signed to guarantees performance
and availability indexes that should be accomplished by those who own the
infrastructure.

From the academic perspective, some works had evaluated the Hyperledger
Fabric attributes, most of them focused on the platform performance, such
as Sukhwani et al. 2017 [24], Pongnumkul et al. 2017 [21], and Thakkar et
al. 2018 [27], while other ones such as Melo et al. 2019 [18] focused only in
the system’s availability issues. To the best of our knowledge, neither of the
works had proposed a blockchain-specific platform that helps planners evaluate
alternative configurations to enhance availability and estimate maintenance
expenses. This paper presents an approach for blockchain-based technology
availability modeling, and a framework evaluates proposed models to support
planning blockchain services based on Hyperledger Fabric’s platform.

The remainder of this paper is organized as follows. Section 2 presents the
works that underlie this research. Section 3 shows the background explaining
the most important topics to fully understanding this paper. Section 4 presents
the support methodology that enabled the construction of the proposed models
and their evaluation, which we present in Section 5. Section 6 presents an
overview of our framework, mainly aiming at what it can do. Already Section
7 provides the scenarios used as a case study to demonstrate how feasible is the
proposed framework. Finally, Section 8 presents the final remarks and future
directions.

A Model-based Approach for Planning Blockchain Service Provisioning 3

2 Related Works

Over the last few years, authors have devoted their efforts to study and evalu-
ate performance and dependability attributes related to blockchain technolo-
gies. This section presents some of these remarkable works.

Pongnumkul et al. 2017 [21] proposed a performance evaluation method-
ology for blockchain-based environments and evaluated both Ethereum and
Hyperledger Fabric’s platforms. The authors concluded that the Hyperledger
Fabric has a large throughput and lower latency than Ethereum, which is
much like to be a result of the consensus protocol adopted. While Ethereum
uses a Proof-of-Work (PoW) protocol, the Hyperledger Fabric worked with
the Practical Byzantine Fault Tolerance (PBFT) protocol. This paper differs
from ours in both evaluated methods and metrics and the evaluation of an
Ethereum-based platform.

In Thakkar et al. 2018 [27], the authors evaluated the performance of Hy-
perledger Fabric and identified some of its performance bottlenecks. The paper
proposed improvements on platform infrastructure based on parameter varia-
tion, such as block size, endorsement policy, and so on, over the transaction
throughput and general latency. As a significant result that we may cite, the
authors could improve the overall throughput by 16 times. Once again, the
authors focused only on the system’s performance issues, putting aside de-
pendability attributes, differing from our paper in both evaluation method
and metrics.

Already in Sukhwani et al. 2017 [24], the authors investigated whether a
consensus process using the PBFT mechanism could be a performance bottle-
neck. The authors evaluated the system through experimentation and Stochas-
tic Reward Nets (SRN) modeling, which was later used to compute critical
performance metrics, such as the mean time to complete the consensus pro-
cess. The PBFT protocol is one of the most used by blockchain platforms,
nearly as important as the PoW protocol.

Later, in Sukhwani et al. 2018 [25], the authors evaluated the performance
of the Hyperledger Fabric through SRN models, which means that this works
dealt with the performance evaluation of the entire platform, improving their
previous work that focused only on the consensus protocol. Once again, the
proposed work differs from ours in the evaluated metrics, modeling formalism,
and most importantly, the main objectives. In both papers, the authors used
the SPNP package to construct and evaluate their models.

Hao et al. 2018 [6] also had evaluated the performance of both Ethereum
and Hyperledger Fabric consensus algorithms in private blockchain infrastruc-
tures. The evaluation method was measurement, and their focus was on the
transaction per second (TPS) and Latency metrics.

The authors in Roy et al. 2019 [22] evaluated security issues and their
impact on a Hyperledger Fabric infrastructure’s performance. The metrics
evaluated were also TPS and Latency, and the evaluation method was mea-
surement.

4 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

Already in Sun et al. 2019 [26], a theoretical blockchain model was proposed
and evaluated through simulation. They had focused on performance as well,
including both TPS and Latency metrics. This paper presented a high-level
view evaluation, which is limited compared to more formal approaches, such
as measuring and analytical models. As could already be seen, most papers
focused only on the Hyperledger Fabric platform’s performance issues, many
of them tell us about how dependable is a blockchain system and so on, but
nearly none had evaluated dependability attributed.

Table 1 presents a general comparison between the current state-of-art and
the present paper.

Table 1: Comparison between state-of-art and present work

Authors Models Metrics Tool

Pongnumkul et al. 2017 [21] - Performance No
Thakkar et al. 2018 [27] - Performance No
Sukhwani et al. 2017 [24] SRN Performance No
Sukhwani et al. 2018 [25] SRN Performance No
Hao et al. 2018[6] - Performance No
Roy et al. 2019[22] - Performance No
Sun et al. 2019[26] Theoretical Model Performance No

This paper RBD & CTMC
Availability
and Costs

Yes

It is important to mention that in both Melo et al. 2019 [18,19], we had
evaluated availability and costs related to the deployment of blockchain ap-
plications over cloud computing environments. These are the closest works
to what we propose here and are a basis for the final models presented and
used by the framework proposed in this paper. It is also important to high-
light that the costs previously evaluated do not consider the values related to
maintenance routines. The endorsement policies considered here were not pre-
viously evaluated, meaning that this paper combines both previous ones and
adds some critical resources regarding blockchain service provisioning. Here
we also proposed a tool to help companies and analysts to decide about a
change in their current environments to a blockchain environment managed
by Hyperledger Fabric.

3 Background

This section presents the fundamental concepts about availability evaluation,
and system’s modeling.

A Model-based Approach for Planning Blockchain Service Provisioning 5

3.1 Availability Evaluation

Dependability is the computer system’s ability to deliver a service that can
be justifiably trusted [1]. This definition considers the users’ perception and
system behavior, meaning that the system is considered a black box.

Evaluating a system’s dependability is usually the result of evaluating at
least one of its five attributes: reliability, availability, maintainability, integrity,
and safety [2]. The system’s availability is the main dependability attribute
evaluated by this paper and can be subdivided into two different subcategories:
instantaneous and steady-state availability.

The system’s instantaneous availability, is the probability that the system
is operational at a time t. That is, A(t) = P {Z(t)} = E {Z(t)} , t ≥ 0, where
Z(t) = 1 when the system is operational, and Z(t) = 0.

The Steady-state availability, which is the one evaluated by this paper and
is also called the long-run availability, is the limit of the availability function
as time tends to infinity (Equation 1).

A = lim
t→∞

A(t), t ≥ 0 (1)

Also, the system’s availability may be represented by a ratio between the
Mean Time To Failure (MTTF) and Mean Time To Repair (MTTR) of the
system (Equation 2).

A =
MTTF

MTTF+MTTR
(2)

The system’s MTTF may be computed from Equation 3, where R(t) is
the reliability of that system as a function of elapsed time. The Equation 4
provides a way of computing the MTTR from the values of MTTF, availability
(A), and unavailability (UA = 1−A).

MTTF =

∫ ∞
0

R(t)∂t (3)

MTTR = MTTF× (
UA

A
), (4)

As expected, the system’s unavailability is the counterpart of the system’s
availability and can be calculated by 1 − A. Already the system’s downtime,
which corresponds to the period where the system is not available, is usually
given in units of time, such as in hours per year, in a way that relates time
and probability: Unavailability × 8760h.

The number of nines can also represent the availability [20], as shown in
Table 2. For example, a system with four 9’s of availability is classified as
fault-tolerant, meaning an annual downtime of nearly 1 hour.

6 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

Table 2: Service availability in number of nines.

of
9’s

Avail.
(%)

System
Type

Downtime
(year)

1 90 unmanaged 5 weeks
2 99 managed 4 days
3 99.9 well managed 9 hours
4 99.99 fault tolerant 1 hour
5 99.999 high availability 5 minutes
6 99.9999 very high availability 30 seconds
7 99.99999 ultra availability 3 seconds

The system’s availability of associated metrics and values can usually be
evaluated through simulation, measurement, and models. The latter was cho-
sen due to the high-level system view provided and their great flexibility in
adapting parameters and achieving results faster than the other two evalua-
tion techniques. This type of model can also be called white box or structural
models and enabled us to create a mathematical representation of the system
based on its relationship. Regarding modeling, we may highlight two main
trends, which are:

– Combinational or non-state-space models capture conditions that make
a system fail (or to be working) regarding structural relationships between
the system’s components [28];

– Already State-space models represent the system’s behavior (failures
and repair activities) by a set of states and the occurrence of events that
can be expressed as rates or distribution functions. These models repre-
sent more complex relationships between the system’s components than
combinatorial models do [16].

Reliability Block Diagram (RBD) [14] and Fault Tree (FT) [15] are among
the most prominent combinatorial modeling formalisms, whereas Petri Nets
(PN), Continuous Time Markov Chain (CTMC) and Stochastic Automata
Networks are well-known state-space modeling formalism [14,5,28].

RBDs were initially proposed to evaluate the system’s reliability by de-
scribing its components’ behavior and their relationship as a set of blocks.
The main limitation of RBDs is the inability to describe concurrent and com-
plex systems [14,12,11], which is not the case in this paper. The blocks in
an RBD can be organized in parallel, serial, and as a K-out-of-N, and there
are only two possible outcomes when dealing with its outputs, 0 for when the
system is unavailable 1, otherwise.

For example, serially connected blocks have their steady-state reliability
and availability evaluated through Equations [14].

RSeries(t) =

n∏
i=1

Ri(t) (5)

A Model-based Approach for Planning Blockchain Service Provisioning 7

ASeries =

n∏
i=1

Ai (6)

Already for a set of n-parallel blocks, the Equation 7 can be used to evaluate
both dependability’s attributes [14].

RParallel(t) = 1−
n∏
i=1

(1−Ri(t)) (7)

AParallel = 1−
n∏
i=1

(1−Ai) (8)

Last but not least important is the k-out-of-n block (KooN) that describes
a set of k equal components among a total of n required to perform the service
provisioning. That means saying 3-out-of-4 components implies that at least
three components of four available must be operational to perform an activity.
The Equation 9 presents the KooN.

RKooN (t) =

N∑
i=k

(
N

i

)
Rc(t))

i × (1−Rc(t))N−i, (9)

AKooN =

N∑
i=k

(
N

i

)
(Ac)

i × (1−Ac)N−i, (10)

where Rc(t) and Ac are the component´s reliability and steady-state avail-
ability, respectively. Using these basic models and CTMC, we obtained the
system availability expressions that can evaluate the system’s availability and
associated metrics mathematically, later used by the proposed framework.

3.2 A Hyperledger Fabric Overview

The Hyperledger Fabric1 (HLF) is a platform for the construction and deploy-
ment of solutions based on shared ledgers. This platform is an open-source
standard developed and maintained by the Hyperledger Consortium2 under
the tutelage of the Linux Foundation.

The Table 33 shows some of the places where the Hyperledger Fabric can
be used, and your applications may be hosted.

There are many ways to deploy a private or permissioned Hyperledger
Fabric infrastructure. A typical HLF environment has at least two actors: the
client and the service provider. In this paper, which includes the still to be
presented framework, we evaluate only the service provider side, which means

1 Hyperledger Fabric: https://www.hyperledger.org/projects/fabric
2 Hyperledger: https://www.hyperledger.org/about
3 Ledger Insights: https://www.ledgerinsights.com/how-to-blockchain-as-a-service-baas/

8 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

Table 3: Why should I choose the Hyperledger Fabric?

Host Ethereum Quorum Corda Hyperledger Fabric MultiChain

AWS X X X X
Azure X X X X X
Google X X
HPE X
IBM X
Oracle X
SAP X X

that the client-side does not impact either availability and both deployment
and maintenance costs.

The service provider side on an HLF environment uses container technology
based on smart contracts (chaincodes) management. These chaincodes must
be pre-installed on the environment as it is deployed. Generally speaking, the
chaincodes are responsible for managing the business rules and how the appli-
cation will perform its activities. Already on the client-side, an SDK written
in Node.JS or Java provides the communication between the server and client
parts.

Figure 1 shows a high-level view of a server hosting the Hyperledger Fabric
minimal deployment. Since any component’s failure results in the service’s
failure, there is no real dependency between them, at least in terms of service
provisioning.

HW

OS

Docker Engine

Peer
(Endorser) OrdererMSP Hyperledger Fabric

Fig. 1: Service Stack

There are four different components considered in our high-level view: the
server’s hardware (HW), operating system (OS), container engine (Docker
Engine), and the deployed containers. The Hyperledger Fabric’s environment
deals with three different types of containers: (1) the peer node, which performs
endorsement; (2) the MSP node, responsible for membership and access to the
platform; and (3) the orderer node, that receives and assigns transactions to
batches and send it back to the peer node. This high-level view is essential
since our models will be provided based on these components’ relationship.

A Model-based Approach for Planning Blockchain Service Provisioning 9

3.3 A Blockchain-based Application

This paper evaluates a basic application deployed over the three Hyperledger
Fabric’s containers. Usually, a client uses its SDK to send a transaction to the
service provider. However, many other steps are required and must be first
accomplished on the other side to perform a transaction.

Figure 2 shows how the client and the service provider communicates, as
well as which steps must be followed by a transaction in order to it be entirely
accepted by the system [7,8].

0. Enroll

2. Submit Transaction

Client 1. ProposalSDK 4. Batch

Order TXs in a batch
according to consensus

Orderer

No SPoF
No SPoT

Membership

3. RelayEndorser
Commiter

Ledger
Events

Chaincode

Peer

Fig. 2: Hyperledger Fabric’s Overview

The client connects to the system through the Membership Service Provider
(MSP), which should provide no Single Point of Failure (SPoF) and no Single
Point of Truth (SPoT). The MSP verifies the credentials of this client and pro-
vides access to the service provider. Later, the client proposes a transaction
to the node know as Peer. There are many kinds of peers. Our focus is on
endorsement peers, who simulate a transaction and send it back to the client
with a signature that determines if the system can perform this transaction.

As an example of a transaction, we may cite transferring assets between
two clients, which needs both clients to exist and that the sender has as much
balance as the value that he wants to transfer, discounting additional fees.

The transaction endorsement is based on a set of policies described by the
chaincode. These policies specify how many and how these nodes agree with
a transaction state. There are three central endorsement policies, which are
AND, OR, and K-out-of-N (KooN). Suppose that we have three servers on the
service provisioning side, each one hosting an endorsement peer. If an AND
policy is being used, all three nodes must endorse the transaction, which means
that all three must sign it back to the client. If we are using an OR policy, then
at least one of the three nodes must sign the transaction. The same applies to
the KooN policy, where we determine how many of the available peers must
sign the transaction, 1-out-of-3, 2-out-of-3, or even 3-out-of-3.

After the endorsement, the transaction is submitted to the Orderer con-
tainer. The orderer container joins all transactions in a batch (block) and

10 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

sends it to the peers, which should commit the ledger’s transactions based on
the chaincode requirements. This comprises most of the Hyperledger Fabric
applications.

4 Modeling and Evaluation Methodology

This section presents how we had accomplished our primary goals and how this
work can be replicated. At first, the required hardware and software resources
are listed, as well as their expected behavior.

Figure 3 shows an organization chart that summarizes our strategy.

M
od

el
in

g
an

d
Ev

al
ua

tio
n

M
et

ho
do

lo
gy

Pl
an

ni
ng

begin

1. System Understanding

3. Metrics Definition

2. Components Identification

M
od

el
in

g 4. RBD Model Conception

5. Multilevel CTMC Model Conception

6. Extraction of Availability Expressions

no

Ev
al

ua
tio

n

7. Survey Input Parameters

8. Availability Models Evaluation

9. Availability Expressions Evaluation

10. Results Comparison

yesSatisfactory?
end

Fig. 3: Modeling and Evaluation Methodology

The rounded rectangles represent each step of the modeling and evaluation
methodology, while the arrows connecting the rectangles define an order to this
process. The evaluator only advances to the next step after the completion of
the current one. Already the diamond represents a step that can lead to two
different paths, that is, if the comparison of the model and expressions results

A Model-based Approach for Planning Blockchain Service Provisioning 11

are considered satisfactory, then the evaluation proceeds; otherwise, it returns
to the previous modeling phase, where adjustments will be made until it shows
compatible results between both formalisms.

4.1 Planning

The planning phase covers the first three steps of the modeling and evaluation
methodology: (1) system understanding; (2) components identifications; and
(3) metrics definition.

System understanding: this step consists of understanding the Hyper-
ledger Fabric platform and the relationship between the Docker Engine and
the container images (Peer, MSP, and Orderer nodes).

The so-called main requirements include most computer systems, including
cloud platforms and their respective services, and corresponds to one of the
first steps of the system’s understanding process [9].

Components identification: survey all components required to accom-
plish service provisioning.

The prerequisites to create a blockchain environment based on the Hy-
perledger Fabric private or permissioned environment includes any modern
hardware running Linux, MacOSX, or Microsoft Windows 10 Operating Sys-
tem with support to Docker Engine 18+. The Docker Engine is responsible
for creating and managing the Hyperledger Fabric containers and making it
easier for the deployment process.

After listing our relevant requirements and understand how they inter-
act with each other (as already seen in Figure 1), we may determine a way
to evaluate the system, which usually includes a path to obtain the needed
information about it [9].

Metrics definition: the third step corresponds to the establishment of
the system metrics that will be evaluated. Choosing metrics and evaluation
parameters that have a low impact on the user and administrator perception
will lead to a waste of time and resources [9], but availability related issues
are trending among service providers.

4.2 Modeling

The modeling phase presents the other three steps related to modeling concep-
tion, including extracting availability expressions from the proposed models to
use them on the proposed framework.

RBD Model Conception: in a hierarchical modeling strategy, we pro-
posed an RBD model to present the tree base components presents in Figure
1, which are respectively Hardware, Operating System and Docker Engine.
As already mentioned, there is no dependency regarding service provisioning
availability, which means that the entire system could be represented through
a single RBD. To generalize the model to just a set of expressions that could
later be used in the framework, we also propose a CTMC.

12 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

Multilevel CTMC Model Conception: this model represents the com-
bination of the previously proposed model (the RBD) with the Hyperledger
Fabric containers, hierarchically representing the entire system.

Extraction of Availability Expressions: from the CTMC model, we
could extract a set of availability expressions related to the three central en-
dorsement policies used by Hyperledger Fabric, which are AND, OR, and
K-out-of-N.

4.3 Evaluation

The evaluation phase presents the last four steps of modeling evaluation, in-
cluding evaluating the availability expressions and models through a set of
input values obtained from the literature review.

Survey Input Parameters: based on the planning and modeling phase
and as a result of previous activities, we may obtain the input values that will
be used by the proposed models by consulting previously published works,
related works, and manufacturers’ specifications.

Availability Models Evaluation: the proposed models were evaluated
through the Mercury tool [13], right after it be fed with the set of input mean
time to failure (MTTF) and mean time to repair (MTTR) values previously
obtained; as an output, this step provides results that will be latter compared
against the values obtained through the evaluation of the expressions.

Availability Expressions Evaluation: same as the previous step, and
based on the input parameters, we performed an evaluation and obtained a
set of results to be compared.

Results Comparison: the last step of the evaluation process consists of
comparing both obtained results to prove that both models and expressions
represent the same system. A result is considered a satisfactory result when
we can obtain the same or similar availability value from both the high-level
model and its expression. Then, the expression can finally be used by the
framework.

5 Availability Models

This section presents the proposed availability models representing environ-
ments that can host Hyperledger Fabric’s nodes and blockchain-based appli-
cations.

To represent a Hyperledger Fabric-based architecture and all components
must be operational to perform service provisioning, we considered a two-
stage hierarchically modeling. In the first stage, we adopted an RBD model
representing the primary system’s components: hardware, operating system,
and container engine -Docker Engine. The system’s components are presented
in a serial RBD, meaning that if at least one of its components fails, then the
whole system will fail as well. Assuming the failure rates are constant; hence

A Model-based Approach for Planning Blockchain Service Provisioning 13

we estimate the mean time to failure of system primary components by using
Expressions 11 and 12.

Rspc(t) = Rhw(t)×Ros(t)×Rde(t), (11)

Which is equivalent to

Rspc(t) = e−λhwt × e−λost × e−λdet, (12)

where Ri(t) = e−λi t, i ∈ {hw, os, de}. Also, through Expressions 13 and
14 we show how the MTTF was calculated.

MTTF =

∫ ∞
0

e−(λhw+λos+λde) t dt, (13)

which leads to,

MTTF =
1

λhw + λos + λde
(14)

After evaluating the primary component’s RBD, we had obtained their
respective MTTF and MTTR. The next step in the system’s modeling process
deals with Hyperledger Fabric containers. Figure 4 presents the CTMC for the
whole system, representing our second hierarchically modeling stage.

1 1 1

0 0 0

1 0

λ

Mμ

λc
a

le
n

λo
rd

λca

μen

μord

2M-1M

(M-1)μμ

2λMλ (M-1)λ

2μ (M-2)μ

3λ

Fig. 4: Availability Model

This CTMC first level deals with the previously stated RBD, which may
have up to M machines, each with its Hardware, Operating System, and
Docker Engine. It is important to highlight that each machine represented in
this model runs three containers (Endorser, MSP, and Orderer), represented
by the CTMC’s second level. The machines may enter into a failure state or be

14 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

repaired following an exponential distribution-based rate λ and µ, respectively.
These rates are the inverse of the MTTF and MTTR values obtained from a
RBD. Already the Hyperledger Fabric’s containers have their rates, which are
the λca and µca that stands for the MSP fail and repair rates, λen and µen for
the endorser container, and λord and µord represents the orderer rates.

From this model, by using the State Diagrams package in Wolfram Math-
ematica [29], we could extract a set of expressions to evaluate the availability
of the system based on the aimed endorsement policy. The first expression is
the server expression, that represents a model with only one physical machine
and its three containers, as can be seen in Expression 15.

AServer =

(
µ

µ+ λ

)
×
(

µca
µca + λca

)
×
(

µen
µen + λen

)
×
(

µord
µord + λord

)
(15)

From this expression, we may calculate the availability (A) of a single
server. Later, we have generalized this expression by using a binomial. The
Expression 16 is the second expression; it represents the K-out-of-N endorse-
ment policy, where someone can establish a K number of an M total of com-
ponents that must be operational in order to accomplish service provisioning,
that means to the system be available, and the endorsement is performed. This
expression is a generalization of the previous one and can be used to calculate
any servers and their associated container.

AKooN =

M∑
i=k

(
M

k

)
AkServer(1−AServer)

M−k (16)

It is important to mention that K stands for the number of components
expected to be operational, and M is the total of resources that we have.
Some specific scenarios may be extracted from the KooN policy, meaning that
some other expressions can be obtained to calculate a combination of K and
N values. The third Expression 17 represents the AND endorsement policy,
which requires that all components in the first and second levels of the CTMC
be operational, which means that it is an N out of N .

ANooN =

(
µ

µ+ λ

)M

×
(

µca

µca + λca

)M

×
(

µen

µen + λen

)M

×
(

µord

µord + λord

)M

(17)

The Expression 18 evaluates the system availability for a configuration
when only one out of N components need to be operational. This expression
presents the OR endorsement policy, where at least one of each type of com-
ponent in both first and second levels of CTMC is required to be operational,
meaning that the system is available and that we can perform the endorsement
with only a single node and its containers from a total of N resources.

A Model-based Approach for Planning Blockchain Service Provisioning 15

A1ooN =

(
1 −

(
λ

λ+ µ

)M
)

×
(

1 −
(

λen

λen + µen

)M
)

×(
1 −

(
λord

λord + µord

)M
)

×
(

1 −
(

λca

λca + µca

)M
) (18)

6 Framework Overview

The Blockchain Provisioning Planning Tool (BPPT), as the name says, it
is a tool for planning the provisioning of a blockchain environment based
on the Hyperledger Fabric Infrastructure4. With the BPPT, one can plan
both availability-related metrics and the expenses related to maintenance and
deployment of private computational infrastructures and compare it against
three of the most popular public cloud service providers: Amazon AWS, Google
Cloud, and Microsoft Azure.

6.1 Availability Planner

The Availability Planner uses the expressions previously extracted from the
multilevel CTMC model to determine the system’s availability and its respec-
tive annual downtime. The Figure 5 presents the availability planner.

Fig. 5: Availability Planner

The administrator can manually provide their MTTFs and MTTRs values
for each system’s component or use a default set of values obtained through

4 BPPT: https://blockchain-bppt.herokuapp.com/apps/meu_app

https://blockchain-bppt.herokuapp.com/apps/meu_app

16 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

the literature review. Other parameters that can be changed are the number
of available servers and the K value when the decision-maker plans to consider
a K-out-of-N endorsement policy.

6.2 Cost Planner

The cost planner includes the previously stated input parameters plus a set of
electric and maintenance expenses. Figure 6 shows the upper part of the cost
planner.

Fig. 6: Cost Planner Upper Level

The user can define the cost per server in American dollars and the mainte-
nance costs, and the city’s kilowatt price or state that he lives. It is also possible
to determine server wattage. As for the electric costs, we could achieve real
values for the energy consumption of the selected components by using the
Equation 19.

E =
Power (W) × NHD × NDY

1000
(19)

where E stands for energy costs, NHD for the number of hours per day and
NDY is the number of days per year that the equipment is operational.

At a comparison level, we may choose public cloud computing platforms,
such as Google Cloud, Amazon AWS, and Microsoft Azure. These three plat-
forms provide environments that can be used to host Hyperledger Fabric-based
applications. As expected, each platform has its characteristics. We chose the

A Model-based Approach for Planning Blockchain Service Provisioning 17

most basic container/Virtual Machine for each platform. Table 4 summarizes
the selected environments.

Table 4: Annual Expenses by Instance in Public Clouds

Platform Instance Type On-demand/y (USD) Availability (%)

Amazon n1-standard-1 291.24 99.9
Google m3.medium 420.48 99.9
Microsoft D1s 403,56 99.9

The cost planner has obtained results supporting comparing the deploy-
ment and maintenance expenses of the private infrastructure with virtual ma-
chines provided by Amazon AWS, Google, and Microsoft Azure, extending
the number of years to be evaluated in an on-demand model. It is essential to
mention that the acquisition costs are considered only in the first year, which
implies that the subsequent years will consider only electric and maintenance
values.

Figure 7 shows the lower level of cost planner, which presents more detailed
information about the policies being used, the 1st year deployment expenses,
the expected annual downtime that can be reached, and the annual mainte-
nance costs by considering the number of failures.

Fig. 7: Cost Planner Lower Level

The AND endorsement policy seems to be the one with the highest number
of failures since all machines need to be operational to accomplish service
provisioning. So, maintenance will be called much more times than with an
OR endorsement policy and usually a KooN endorsement policy.

6.3 Experiment

The experimentation screen allows the user to see the impact of a single com-
ponent (simple experiment) or a set of components (general experiment) over
the general system’s availability, based on the input parameters’ variation.
The user can establish the number of sampling points to be plotted and the
positive range in hours that a parameter varies. This can be considered a para-
metric sensitivity analysis method, so by putting everything together, one can

18 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

point out the components’ impacts that most affect the metrics of interest:
the availability and the annual system’s downtime.

7 Case Studies

This section provides a case study that demonstrates how feasible is the pro-
posed framework. We evaluate both Availability and Cost planning.

The first step to accomplish this task is to obtain the required system’s
input values to feed the framework and perform the availability evaluation.
Some of these values were obtained from a literature review [3,17,23], while
other ones were extracted from manufacturer charts and white papers. The
input values used in this paper are the same as the ones used as default in the
BPPT framework and can be seen in Table 5.

Table 5: Input Parameters for Availability Evaluation

Component MTTF (h) MTTR (h)

Hardware (HW) 8760 1.66
Operating System (OS) 2893 0.15
Docker Engine (DE) 2516 0.15
Containers 1258 0.15

Also, it is important to mention that ten different scenarios were evalu-
ated. These scenarios are presented in Table 6. Each one considers a possible
combination of endorsement policy and several nodes from 1 up to 4 servers
hosting the three containers.

Table 6: Evaluated Scenarios

Scenario Policy Required Servers Total Servers

1 AND 1 1
2 AND 2 2
3 AND 3 3
4 AND 4 4
5 OR 1 2
6 OR 1 3
7 OR 1 4
8 KooN 2 3
9 KooN 2 4

10 KooN 3 4

7.1 Availability Planning

After listing the input availability values and ten different scenarios, each one
following either OR, AND, or KooN endorsement policy, we have evaluated

A Model-based Approach for Planning Blockchain Service Provisioning 19

their respective availability. Table 7 presents the general availability results
obtained for each proposed scenario.

Table 7: Availability Results

Scenario Av. (%) Av. (#9s) A. Downtime (h)

1 99.9341 5.77 5.77
2 99.8683 2.88 11.53
3 99.8026 2.70 17.29
4 99.7369 2.58 23.05
5 99.9998 6.36 0.0038
6 99.9999 9.54 0.000003
7 99.9999 12.73 0.00000002
8 99.9987 5.89 0.011
9 99.9999 8.94 0.000009

10 99.9997 5.59 0.022

As can be seen, the availability (Av.) when evaluating an AND policy goes
down as we add more resources (nodes), which is already expected since all
components must be operational, and in case of failure of any of them, the
transaction’s endorsement can not be performed. Already when considering an
OR endorsement policy, the availability grows up as more resources are added.
Last but no less important, the KooN endorsement policy shows a mid-term
availability compared to an AND and an OR policy; it goes down as more
nodes are needed, meaning that it tends to an AND policy. The same results
can be achieved by considering the Annual (A.) Downtime for each scenario
and endorsement policy.

7.1.1 Baseline Experimentation

We have conducted an experiment regarding the input parameters’ impact on
the overall system’s annual downtime. To accomplish this task, we varied and
rounded each parameter value in +50% and -50% as in the given time interval,
which is presented in Table 8.

Table 8: Experiment Parameters

Interval (h)
Parameter Min. Max.

MTTF HW 4400 13200
MTTR HW 0.5 2.1
MTTF OS 1450 4340
MTTR OS 0.05 1
MTTF Docker 1260 3775
MTTR Docker 0.05 1
MTTF Container 630 1890
MTTR Container 0.05 1

20 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

The obtained results are presented in Figure 8. From this figure, we can see
that the higher the MTTF, the lower the annual downtime, while the lower
the MTTR, the higher the obtained downtime values, which should be the ex-
pected behavior. Among these results, we may highlight the Container MTTF
and MTTR (g and h-subfigures); they seem to be the bottleneck regarding the
system’s availability associated metrics.

7.2 Costs Planning

As we previously did with the availability planning, we also need a set of input
values to evaluate the costs of deploying and maintaining an environment.
Table 9 presents the costs adopted in this case study.

Table 9: Costs Planning Input Values

Parameter Value (USD)

Cost p/ Server (USD) 1000
Cost p/ Maintenance (USD) 100
KWh Price (USD) 0.3
Server Wattage (W) 120

Table 10 presents the general costs values associated to the previous input
values. We had also considered the same ten scenarios previously presented in
the availability evaluation subsection, as shown in this table.

Table 10: General Costs Results

Scenario Costs/y (USD) Costs/y (USD) Total Costs (USD)

1 2,840.00 315.36 3,155.36
2 5,680.00 1,261.44 6,941.44
3 8,520.00 2,838.24 11,358.25
4 11,360.01 5,045.76 16,405.77
5 2,840.00 1,261.44 4,101.44
6 2,840.00 2,838.24 5,678.24
7 2,840.00 5,045.76 7,885.76
8 5,680.00 2,838.24 7,572.16
9 5,680.00 5,045.76 8,202.88

10 8,520.01 5,045.76 12,304.32

It is essential to mention that the cooling system’s energy consumption
is considered equal to the energy consumed with the server’s operation. Si-
multaneously, the evaluated annual maintenance expenses were based on the
occurrence of failures and a maintenance value of 100 dollars per call. This
value is arbitrary and usually varies according to who is going to perform the
maintenance. If the service provider already has or pays someone to perform
corrective maintenance on their system, these values tend to be zero on the

A Model-based Approach for Planning Blockchain Service Provisioning 21

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8: Experimental Results

22 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

framework. Otherwise, if the provider wishes to hire someone for this task,
which could be a freelancer or a specialized company, these costs should be
included in the evaluation process.

The AND endorsement policy has higher maintenance costs since it needs
more maintenance than an OR and KooN based endorsement policy. The
maintenance values required for an OR policy are lower, at least compared to
AND policy infrastructures, because a system’s failure only happens when all
components are unavailable, then we finally call the maintenance team.

A lower-cost can be obtained with a KooN policy, comparing it with an
AND policy, and another factor may impact the choice, which is a limitation
of the present work and framework itself; we do not consider threats to safety-
related items. Hence, an OR endorsement policy leads to a higher chance that
a transaction could tamper. If a single node has tampered with, the entire
infrastructure can be compromised. In an AND endorsement policy, all nodes
must tamper. A KooN endorsement policy requires at least K out of N nodes
tamper information on the chaincode.

All these factors must be led into account when the administrator decides
to migrate to a new environment, the deployment and maintenance costs,
availability, annual downtime, and safety issues when he decides on a specific
endorsement policy. Many have to be done; the BPPT is only the first tool to
help them decide what to do. However, it still has to be improved.

8 Conclusions and Future Works

This paper presented the BPPT, a framework to evaluate availability and costs
associated with the deployment and maintenance of private computational
infrastructures. The BPPT focus on the Hyperledger Fabric platform and its
components for hosting blockchain-based applications.

BPPT are two models of two different modeling formalism, an RBD and a
CTMC; both represent the Hyperledger Fabric environment and are organized
hierarchically. The availability expression that represents these models were
extracted using Wolfram Mathematica and Mercury modeling tool.

As for the maintenance and deployment expenses, the BPPT receives input
parameter values related to kilowatt, server wattage, and maintenance values.
The BPPT also presents an experiment screen, where the stakeholders and
decision-makers may evaluate the impact of varying the parameters on systems
availability and associated annual downtime. We presented case studies that
dealt with availability and costs evaluation of a set of scenarios varying the
endorsement policy, which is a vital characteristic of a Hyperledger Fabric
infrastructure.

We intend to update the BPPT with performance-related planning and an
automatized sensitivity analysis mechanism that could help decision-makers
obtain the aimed values related to the impact of a component over a met-
ric of interest more quickly. Also, some safety information is required since
it dramatically impacts the possibility of adopting the blockchain paradigm.

A Model-based Approach for Planning Blockchain Service Provisioning 23

Is it wise to change from a common distributed database to this so-called
new technology? We already know the costs and availability, but safety and
performance are yet to come.

Acknowledgements The authors would like to thank the Brazilian Government for the
financial support through the Fundação de Amparo a Ciência e Tecnologia de Pernambuco
(FACEPE), the Modeling of Distributed and Concurrent Systems (MoDCS) group for the
help on improving this research.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1, 11–33 (2004)

2. Avižienis, A., Laprie, J., Randell, B., of Newcastle upon Tyne. Computing Science, U.:
Fundamental Concepts of Dependability. Technical report series. University of Newcas-
tle upon Tyne, Computing Science (2001). URL https://books.google.com.br/books?

id=cDkmGwAACAAJ

3. Dantas, J.: Modelos para analise de dependabilidade de arquiteturas de computação em
nuvem. Master’s thesis, Centro de Informática - Universidade Federal de Pernambuco
(Recife, Brasil) (2013)

4. Ekblaw, A., Azaria, A., Halamka, J.D., Lippman, A.: A case study for blockchain in
healthcare:“medrec” prototype for electronic health records and medical research data.
In: Proceedings of IEEE open & big data conference, vol. 13, p. 13 (2016)

5. Garg, S., A, P., M, T., Trivedi, K.S.: Analysis of software rejuvenation using markov re-
generative stochastic petri net. In: Proc. In: Sixth International Symposium on Software
Reliability Engineering, (ISSRE’95), pp. 180–187. Paderborn (1995)

6. Hao, Y., Li, Y., Dong, X., Fang, L., Chen, P.: Performance analysis of consensus algo-
rithm in private blockchain. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
280–285. IEEE (2018)

7. Hyperledger: An introduction to hyperledger. Tech. rep. (2018)
8. Hyperledger: Introduction to hyperledger business blockchain design philosophy and

consensus. Tech. rep. (2018)
9. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experi-

mental Design, Measurement, Simulation, and Modeling. Wiley Computer Publishing,
John Wiley & Sons, Inc., New York (1991)

10. Kumar, M.V., Iyengar, N.C.S.N., Goar, V.: Employing blockchain in rice supply chain
management. In: Advances in Information Communication Technology and Computing,
pp. 451–461. Springer

11. Kuo, W., Zuo, M.: Optimal Reliability Modeling: Principles and Applications. Wiley
(2003). URL https://books.google.com.br/books?id=vdZ4Bm-LnHMC

12. Maciel, P., Lins, R., Cunha, P.: Uma Introducao as Redes de Petri e Aplicacoes. So-
ciedade Brasileira de Computacao (1996)

13. Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D., Fé, I., Maciel, R., Dan-
tas, J.: Mercury: Performance and dependability evaluation of systems with exponen-
tial, expolynomial, and general distributions. In: 2017 IEEE 22nd Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC), pp. 50–57 (2017). DOI
10.1109/PRDC.2017.16

https://books.google.com.br/books?id=cDkmGwAACAAJ
https://books.google.com.br/books?id=cDkmGwAACAAJ
https://books.google.com.br/books?id=vdZ4Bm-LnHMC

24 Carlos Melo, Jean Araujo, Jamilson Dantas, Paulo Pereira and Paulo Maciel

14. Maciel, P., Trivedi, K., Matias, R., Kim, D.: Dependability modeling. In: Performance
and Dependability in Service Computing: Concepts, Techniques and Research Directions
(2011)

15. Malhotra, M., Trivedi, K.: Power-hierarchy of dependability-model types. Reliability,
IEEE Transactions on 43(3), 493–502 (1994). DOI 10.1109/24.326452

16. Matos, R., Araujo, J., Oliveira, D., Maciel, P., Trivedi, K.: Sensitivity analysis of a
hierarchical model of mobile cloud computing. Simulation Modelling Practice and
Theory 50, 151 – 164 (2015). DOI https://doi.org/10.1016/j.simpat.2014.04.003.
URL http://www.sciencedirect.com/science/article/pii/S1569190X14000616. Spe-
cial Issue on Resource Management in Mobile Clouds

17. Melo, C., Dantas, J., Araujo, J., Maciel, P.: Availability models for synchronization
server infrastructure. In: Proceedings of the IEEE Int. Conf. on Systems, Man, and
Cybernetics (SMC’16). Budapest, Hungary (2016)

18. Melo, C., Dantas, J., Maciel, R., Pereira, P., Quesado, E., Maciel, P.: Blockchain pro-
visioning over private cloud computing environments: Availability modeling and cost
requirements. In: 2019 IEEE 8th International Conference on Cloud Networking (Cloud-
Net), pp. 1–3. IEEE (2019)

19. Melo, C., Dantas, J., Maciel, R., Silva, P., Maciel, P.: Models to evaluate service provi-
sioning over cloud computing environments-a blockchain-as-a-service case study. Revista
de Informática Teórica e Aplicada 26(3), 65–74 (2019)

20. Öhmann, D., Simsek, M., Fettweis, G.P.: Achieving high availability in wireless networks
by an optimal number of rayleigh-fading links. In: 2014 IEEE Globecom Workshops
(GC Wkshps), pp. 1402–1407. IEEE (2014)

21. Pongnumkul, S.e.a.: Performance analysis of private blockchain platforms in varying
workloads. In: 2017 26th International Conference on Computer Communication and
Networks (ICCCN), pp. 1–6. IEEE (2017)

22. Roy, G.G.R., Kumar, S.B.R.: A security framework for a sustainable smart ecosystem
using permissioned blockchain: Performance evaluation

23. Sebastio, S., Ghosh, R., Mukherjee, T.: An availability analysis approach for deployment
configurations of containers. IEEE Transactions on Services Computing (2018)

24. Sukhwani, H., Mart́ınez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance model-
ing of pbft consensus process for permissioned blockchain network (hyperledger fabric).
In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), pp. 253–255.
IEEE (2017)

25. Sukhwani, H., Wang, N., Trivedi, K.S., Rindos, A.: Performance modeling of hyperledger
fabric (permissioned blockchain network). In: 2018 IEEE 17th International Symposium
on Network Computing and Applications (NCA), pp. 1–8. IEEE (2018)

26. Sun, Y., Zhang, L., Feng, G., Yang, B., Cao, B., Imran, M.A.: Blockchain-enabled
wireless internet of things: Performance analysis and optimal communication node de-
ployment. IEEE Internet of Things Journal 6(3), 5791–5802 (2019)

27. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing
hyperledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 264–276. IEEE (2018)

28. Trivedi, K.S., Hunter, S., Garg, S., Fricks, R.: Reliability analysis techniques explored
through a communication network example (1996)

29. Weisstein, E.W., et al.: Mathworld–a wolfram web resource (2004)

http://www.sciencedirect.com/science/article/pii/S1569190X14000616

	Introduction
	Related Works
	Background
	Modeling and Evaluation Methodology
	Availability Models
	Framework Overview
	Case Studies
	Conclusions and Future Works

